COURSE HANDOUT

Course Code ACSC13

Course Name Design and Analysis of Algorithms
Class / Semester IV SEM

Section A-SECTION

Name of the Department | CSE-CYBER SECURITY

Employee ID IARE11023
Employee Name Dr K RAJENDRA PRASAD
Topic Covered minimum cost spanning trees

Construct the minimum spanning trees for the graph using Prim’s and

Course Outcome/s Kruskal’s algorithm

Handout Number 29

Date 6 April, 2023

Content about topic covered: Minimum cost spanning

Spanning tree: Let G = (V, E) is an undirected connected graph. A sub-graph t
= (V, E’) of G is a spanning tree of G if and only if t is tree.

An undirected graph and its spanning trees are shown below:

K LL 1o ol

The cost of spanning tree is the sum of the cost of the edges in that tree.

A spanning tree with minimum cost is called minimum cost spanning tree.

A graph and its minimum cost spanning tree are shown below:

To find the minimum cost spanning tree, two algorithms are used.
1. Prim’s algorithm
2. Kruskals algorithm.

1. Prim’s Algorithm

Algorithm Prim(E, cost, n, t)

// E is the set of edges in G. cost[l : n,1:n] is the cost

// adjacency matrix of an n vertex graph such that costlt, 7] is
// either a positive real number or oo if no edge (i, j) exists.

// A minimum spanning tree is computed and stored as a set of
// edges in the array #[1:n ~ 1,1:2]. (¢[7,1].£[¢,2]) is an edge in
// the minimum-cost spanning tree. The final cost is returned.

Let (k,1) be an edge of minimum cost in Ej;
mincost 1= cost|k,];
t1,1] = k3 t[1,2] := 13
for i:=1to n do [/ Initialize near.
if (cost[i,l] < cost[i, k]) then near(i] := I
else neari] := ks
near[k] 1= near(l] := 03
for i:=2ton—1do
{ // Find n — 2 additional edges for .
Let 7 be an index such that near[j] # 0 and
cost[7, near[j]] is minimum;
(i, 1] = j; t[i, 2] := near[j];
mincost ;= mincost + cost|j, near[j]];
near(j] := 0;
for k:=1 to n do // Update near| |.
if ((near[k] # 0) and (cost[k, near[k]] > cost[k, j]})
then near(k] := j;
}

return mincost;

The algorithm will start with a tree that includes only a minimum cost edge of G. Then edges are
added to this tree one by one. The next edge (i, j) to be added is such that i is a vertex already include
in the tree, j is a vertex not yet included, and the cost of (i, j) is minimum among all edges (k, 1) such
that vertex k is in the tree and vertex 1 is not in the tree.

To determine the edge (i, j) efficiently, we associate with each vertex j not yet included in the tree a
value near|[j]. The value near[j] is a vertex in the tree such that cost|[j, near[j]] is minimum among all
choices for near[j]. We define near[j] = 0 for all vertices j that are already in the tree. The next edge to
include is defined by the vertex j such that near[j] # 0 and cost[j, near[j]] is minimum.

Eg: Consider the following graph

LO/ 14(?_\31
ONGINO

The stages in the Prim’s algorithm are shown below:
’ }D (D
10 @ 10 @ 10 @
@ @ @{ &0 & 0 6
25 25
® %) ©
@

(d) (e}

The time required by Prim’s algorithm is O(n?), where n is the number of vertices in the graph.

2. Kruskal’s Method

Algorithm Kruskal(E, cost,n,t)

// E is the set of edges in G. G has n vertices. cost[u,v] is the
// cost of edge (u,v). t is the set of edges in the minimum-cost
// spanning tree. The final cost is returned.

Construct a heap out of the edge costs using Heapify;
for 7 := 1 to n do parent[i] := ~1;

// Each vertex is in a different set.

1 := (3 mincost := 0.0

while ((i <n — 1) and (heap not empty)) do

Delete a minimum cost edge (u,v) from the heap
and reheapify using Adjust;

7 := Find(u); k := Find(v);

if (j # k) then

{

i=1i+1;

t[i, 1] == us t[i, 2] := w3

mincost := mincost + cost[u, v];
) Union(j, k)3

if (7 # n~ 1) then write ("No spanning tree");
else return mincost;

}

In Kruskal’s method, the edges of the graph are considered in non-decreasing order of cost. In this
method, the set t of edges so far selected for the spanning tree be such that it is possible to complete t
in to a tree. Thus t may not be a tree at all stages in the algorithm. In fact, it will be only a forest since
the set of edges t can be completed in to a tree if and only if there are no cycles in t.

Eg: Consider the following graph

The stages in kruskal’s algorithm are:

@ 10 @ 10 @
®© @O & o O @ ® O &
® ® ® /"
© @ ©
(a) (b) (c)

! 4H D :
g@ 19 1416 19 14 16
(:6 7 (6) (T) 3 6 3
? 12 12
® ® o
© 22 734)
(d) (e) ()

And then finally

The time complexity is O(|E| log |E|) where E is the edge set of G.

